metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[tri-*n*-butyltin(IV)]- μ -pyridine-3-carboxylato- $\kappa^2 N$:O]

Tian-Duo Li^{a*} and Hai-Ying You^b

^aShandong Institute of Light Industry, Shandong 250353, People's Republic of China, and ^bWeifang College of Science and Technology Vocational, Weifang 262700, People's Republic of China Correspondence e-mail: tianduoli@163.com

Received 31 May 2007; accepted 4 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.020 Å; disorder in main residue; R factor = 0.058; wR factor = 0.163; data-to-parameter ratio = 14.9.

The asymmetric unit of the title compound, $[Sn(C_4H_9)_3-(C_6H_4NO_2)]_n$, consists of three butyl and one pyridine-3-carboxylate groups bonded to the Sn atom in a distorted trigonal-bipyramidal geometry. In the crystal structure, these units are linked to form an infinite one-dimensional polymeric chain structure. In one *n*-butyl chain three C atoms are disordered over two sites, and in another two C atoms are disordered over two sites.

Related literature

For bond-length data, see: Allen *et al.* (1987). For general background, see: Gielen *et al.* (1988). For related literature, see: Ma *et al.* (2004).

Experimental

Crystal data $[Sn(C_4H_9)_3(C_6H_4NO_2)]$ $M_r = 412.13$ Monoclinic, Cc a = 9.594 (4) Å b = 24.286 (11) Åc = 9.715 (4) Å $\beta = 114.864 (5)^{\circ}$

 $V = 2053.7 (15) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 1.25 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.529, T_{\max} = 0.597$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.058 \\ wR(F^2) &= 0.163 \\ S &= 1.00 \\ 3260 \text{ reflections} \\ 219 \text{ parameters} \\ \text{H-atom parameters constrained} \end{split}$$

T = 298 (2) K 0.53 × 0.46 × 0.41 mm

5123 measured reflections 3260 independent reflections 2741 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$

 $\begin{array}{l} \Delta \rho_{max} = 1.41 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.73 \ e \ \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 1798 \ \mbox{Friedel pairs} \\ \mbox{Flack parameter: } 0.06 \ (10) \end{array}$

Table 1 Selected geometric parameters (Å, °).

Sn1-C11	2.099 (12)	Sn1-N1 ⁱ	2.603 (16)
Sn1-C15	2.112 (13)	Sn1-O2	3.186 (9)
Sn1-C7	2.127 (13)		
C11-Sn1-C15	124.9 (5)	O1-Sn1-N1 ⁱ	179.1 (8)
C11-Sn1-C7	116.3 (6)	C11-Sn1-O2	80.8 (4)
C15-Sn1-C7	116.4 (6)	C15-Sn1-O2	73.3 (4)
C11-Sn1-O1	97.9 (5)	C7-Sn1-O2	135.2 (4)
C15-Sn1-O1	95.9 (6)	O1-Sn1-O2	44.1 (3)
C7-Sn1-O1	91.2 (5)	N1 ⁱ -Sn1-O2	136.2 (3)
C11-Sn1-N1 ⁱ	81.4 (5)	C6-O1-Sn1	120.1 (9)
C15-Sn1-N1 ⁱ	85.0 (6)	C6-O2-Sn1	70.8 (7)
$C7-Sn1-N1^{i}$	88.5 (5)		

Symmetry code: (i) x, y, z - 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the financial support of the Shandong Institute of Light Industry Science Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2268).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (1998). *SMART* (Version 5.0), *SAINT* (Version 4.0) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873–878.
- Ma, C. L., Han, Y. F., Zhang, R. F. & Wang, D. Q. (2004). *Dalton Trans.* pp. 1832–1840.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m1870 [doi:10.1107/S1600536807027237]

catena-Poly[[tri-*n*-butyltin(IV)]- μ -pyridine-3-carboxylato- $\kappa^2 N$:O]

T.-D. Li and H.-Y. You

Comment

Self-assembled organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities as well as their industrial and agricultural applications (Gielen *et al.*, 1988). pyridine-3-carboxylic acid is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers, and small changes in experimental conditions can lead to very different architectures.

The asymmetric unit of the title compound, (I), (Fig. 1), consists of three butyl and one (pyridine-3-carboxylate) groups bonded to the tin atom, where the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987).

The tin atom has a distorted trigonal bipyramidal geometry with atoms O1 and N1ⁱ of the pyridine-3-carboxylic acid [symmetry code: (i) x, y, z - 1], in axial and C atoms of the three butyl groups in equatorial positions, as in the similar compound (Ma *et al.*, 2004).

In the crystal structure, (Fig. 2), the molecules are linked to form an infinite one-dimensional polymeric chain structure.

Experimental

For the preparation of the title compound, a mixture of tri-n-butyltin oxide (596.1 mg, 2 mmol) and pyridine-3-carboxylic acid (246.2 mg, 2 mmol), in methanol (80 ml) was heated under reflux for 12 h. The resulting clear solution was evaporated under vacuum. The product was crystallized from ethanol (yield; 446.3 mg, 82%, m.p. 398 K).

Refinement

When the crystal structure was solved, the atoms C9, C10, C12, C13 and C14 were found to be disordered. During the refinement process, the occupancies of C9, C12 and C14 were kept fixed as C9 = 1/4, C9' = 3/4, C12 = 1/2, C12' = 1/2, C14 = 0.50 and C14' = 1/2, while the remainings were refined as C10 = 0.39 (3), C10' = 0.61 (3), C13 = 0.39 (3) and C13' = 0.61 (3). H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. A packing diagram for (I). H atoms have been omitted for clarity.

 $F_{000} = 848$

 $\theta = 2.3-28.1^{\circ}$ $\mu = 1.25 \text{ mm}^{-1}$ T = 298 (2) KBlock, colorless $0.53 \times 0.46 \times 0.41 \text{ mm}$

 $D_{\rm x} = 1.333 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 3313 reflections

catena-Poly[[tri-n-butyltin(IV)]-μ-pyridine-3-carboxylato-κ²N:O]

Crystal data
$[Sn(C_4H_9)_3(C_6H_4NO_2)]$
$M_r = 412.13$
Monoclinic, Cc
Hall symbol: -C 2yc
a = 9.594 (4) Å
<i>b</i> = 24.286 (11) Å
c = 9.715 (4) Å
$\beta = 114.864 \ (5)^{\circ}$
$V = 2053.7 (15) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	3260 independent reflections
Radiation source: fine-focus sealed tube	2741 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 9$
$T_{\min} = 0.529, \ T_{\max} = 0.597$	$k = -28 \rightarrow 22$
5123 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.058$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1189P)^{2} + 1.6655P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.163$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 1.41 \text{ e} \text{ Å}^{-3}$
3260 reflections	$\Delta \rho_{min} = -0.73 \text{ e } \text{\AA}^{-3}$
219 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1798 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.06 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Sn1	0.5451 (3)	0.87521 (2)	0.0427 (3)	0.0500 (2)	
01	0.5354 (16)	0.8687 (4)	0.2610 (13)	0.062 (3)	
O2	0.6522 (12)	0.9490 (3)	0.3408 (10)	0.076 (2)	
N1	0.552 (2)	0.8833 (5)	0.779 (2)	0.064 (4)	
C1	0.6275 (15)	0.9254 (5)	0.7557 (12)	0.065 (2)	
H1	0.6718	0.9504	0.8346	0.078*	
C2	0.6459 (14)	0.9350 (5)	0.6238 (12)	0.062 (2)	
H2	0.7027	0.9648	0.6157	0.074*	
C3	0.5757 (14)	0.8981 (5)	0.5027 (12)	0.0552 (18)	
C4	0.4984 (13)	0.8535 (5)	0.5264 (13)	0.061 (2)	
H4	0.4544	0.8273	0.4504	0.073*	
C5	0.4862 (16)	0.8476 (5)	0.6631 (13)	0.0630 (19)	
H5	0.4310	0.8180	0.6754	0.076*	
C6	0.5913 (15)	0.9068 (5)	0.3591 (14)	0.0663 (19)	
C7	0.4511 (18)	0.7949 (5)	-0.0192 (16)	0.083 (2)	
H7A	0.3408	0.7973	-0.0520	0.100*	
H7B	0.4688	0.7830	-0.1058	0.100*	

C8	0.5117 (19)	0.7515 (5)	0.1005 (18)	0.095 (3)	
H8A	0.5009	0.7646	0.1899	0.114*	
H8B	0.6206	0.7471	0.1279	0.114*	
C9	0.4371 (19)	0.6958 (5)	0.0598 (17)	0.098 (3)	0.25
H9A	0.4865	0.6747	0.0081	0.118*	0.25
H9B	0.3298	0.7003	-0.0094	0.118*	0.25
C10	0.448 (6)	0.6638 (16)	0.200 (4)	0.109 (7)	0.39 (3)
H10A	0.3992	0.6286	0.1697	0.163*	0.39 (3)
H10B	0.3973	0.6842	0.2508	0.163*	0.39 (3)
H10C	0.5539	0.6587	0.2683	0.163*	0.39 (3)
C9'	0.4371 (19)	0.6958 (5)	0.0598 (17)	0.098 (3)	0.75
H9'1	0.4335	0.6853	-0.0380	0.118*	0.75
H9'2	0.3318	0.6993	0.0476	0.118*	0.75
C10'	0.512 (4)	0.6492 (11)	0.170 (3)	0.097 (6)	0.61 (3)
H10D	0.4552	0.6158	0.1314	0.145*	0.61 (3)
H10E	0.5113	0.6578	0.2665	0.145*	0.61 (3)
H10F	0.6156	0.6445	0.1825	0.145*	0.61 (3)
C11	0.3914 (15)	0.9411 (6)	-0.0442 (16)	0.081 (2)	
H11A	0.4521	0.9740	-0.0354	0.097*	
H11B	0.3323	0.9344	-0.1517	0.097*	
C12	0.2810 (15)	0.9542 (7)	0.0208 (16)	0.089 (2)	0.50
H12A	0.3310	0.9779	0.1084	0.107*	0.50
H12B	0.2525	0.9204	0.0554	0.107*	0.50
C13	0.133 (3)	0.983 (2)	-0.093 (3)	0.091 (4)	0.39 (3)
H13A	0.1627	1.0105	-0.1486	0.109*	0.39 (3)
H13B	0.0701	0.9560	-0.1654	0.109*	0.39 (3)
C14	0.0394 (19)	1.0105 (8)	-0.025 (2)	0.132 (4)	0.50
H14A	-0.0556	1.0228	-0.1043	0.198*	0.50
H14B	0.0944	1.0415	0.0340	0.198*	0.50
H14C	0.0182	0.9849	0.0391	0.198*	0.50
C12'	0.2810 (15)	0.9542 (7)	0.0208 (16)	0.089 (2)	0.50
H12C	0.3371	0.9558	0.1303	0.107*	0.50
H12D	0.2086	0.9240	-0.0024	0.107*	0.50
C13'	0.188 (3)	1.0082 (10)	-0.032 (4)	0.092 (3)	0.61 (3)
H13C	0.2511	1.0382	0.0284	0.110*	0.61 (3)
H13D	0.1719	1.0150	-0.1366	0.110*	0.61 (3)
C14'	0.0394 (19)	1.0105 (8)	-0.025 (2)	0.132 (4)	0.50
H14D	-0.0082	1.0454	-0.0624	0.198*	0.50
H14E	0.0537	1.0059	0.0782	0.198*	0.50
H14F	-0.0253	0.9815	-0.0862	0.198*	0.50
C15	0.7867 (15)	0.8816 (5)	0.1302 (18)	0.079 (2)	
H15A	0.8117	0.9151	0.0910	0.095*	
H15B	0.8272	0.8854	0.2395	0.095*	
C16	0.8680 (14)	0.8340 (6)	0.0944 (18)	0.094 (3)	
H16A	0.8338	0.8310	-0.0145	0.112*	
H16B	0.8429	0.7999	0.1309	0.112*	
C17	1.0445 (14)	0.8435 (7)	0.1717 (19)	0.100 (3)	
H17A	1.0681	0.8768	0.1306	0.121*	
H17B	1.0756	0.8493	0.2794	0.121*	

C18	1.1349 (18)	0.7980 (8)	0.152 (3)	0.128 (6)
H18A	1.2424	0.8056	0.2075	0.192*
H18B	1.1118	0.7941	0.0459	0.192*
H18C	1.1095	0.7645	0.1884	0.192*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0625 (4)	0.0587 (3)	0.0297 (3)	0.0009 (5)	0.0204 (2)	0.0023 (4)
01	0.068 (6)	0.075 (6)	0.046 (7)	-0.003 (4)	0.027 (5)	-0.001 (4)
O2	0.117 (7)	0.073 (5)	0.060 (5)	-0.028 (5)	0.058 (5)	-0.003 (4)
N1	0.086 (9)	0.067 (7)	0.052 (9)	-0.011 (6)	0.041 (8)	-0.019 (6)
C1	0.088 (4)	0.071 (4)	0.043 (4)	-0.006 (4)	0.035 (3)	-0.004 (3)
C2	0.084 (4)	0.066 (4)	0.042 (4)	-0.007 (4)	0.032 (3)	-0.002 (3)
C3	0.077 (4)	0.058 (4)	0.039 (4)	0.000 (3)	0.034 (3)	-0.005 (3)
C4	0.083 (4)	0.073 (4)	0.040 (4)	-0.012 (3)	0.039 (4)	-0.007 (4)
C5	0.086 (4)	0.075 (4)	0.042 (4)	-0.013 (4)	0.040 (3)	-0.002 (3)
C6	0.082 (4)	0.077 (4)	0.050 (3)	0.002 (3)	0.038 (3)	0.007 (3)
C7	0.096 (5)	0.087 (5)	0.070 (4)	-0.007 (4)	0.038 (4)	0.009 (4)
C8	0.103 (6)	0.085 (5)	0.086 (6)	-0.006 (5)	0.029 (5)	0.016 (5)
C9	0.110 (5)	0.090 (5)	0.085 (5)	-0.005 (4)	0.032 (4)	0.012 (4)
C10	0.115 (11)	0.099 (10)	0.099 (11)	-0.004 (10)	0.032 (10)	0.018 (10)
C9'	0.110 (5)	0.090 (5)	0.085 (5)	-0.005 (4)	0.032 (4)	0.012 (4)
C10'	0.110 (10)	0.101 (10)	0.086 (9)	-0.004 (9)	0.048 (8)	0.013 (9)
C11	0.090 (4)	0.092 (4)	0.068 (4)	0.016 (4)	0.041 (4)	0.014 (4)
C12	0.097 (4)	0.100 (4)	0.076 (4)	0.019 (4)	0.042 (4)	0.009 (4)
C13	0.099 (6)	0.104 (6)	0.077 (6)	0.018 (6)	0.043 (5)	0.010 (5)
C14	0.131 (7)	0.132 (7)	0.107 (7)	0.018 (6)	0.025 (6)	0.012 (6)
C12'	0.097 (4)	0.100 (4)	0.076 (4)	0.019 (4)	0.042 (4)	0.009 (4)
C13'	0.098 (6)	0.104 (6)	0.080 (6)	0.018 (5)	0.043 (5)	0.011 (5)
C14'	0.131 (7)	0.132 (7)	0.107 (7)	0.018 (6)	0.025 (6)	0.012 (6)
C15	0.078 (4)	0.097 (5)	0.069 (5)	0.001 (4)	0.037 (4)	0.007 (4)
C16	0.087 (5)	0.109 (6)	0.086 (6)	0.002 (5)	0.038 (5)	0.005 (5)
C17	0.089 (6)	0.121 (7)	0.092 (7)	-0.002 (6)	0.039 (6)	0.001 (6)
C18	0.097 (9)	0.156 (12)	0.119 (11)	-0.003 (9)	0.033 (9)	-0.021 (10)

Geometric parameters (Å, °)

Sn1—C11	2.099 (12)	C10—H10C	0.9600
Sn1—C15	2.112 (13)	C10'—H10D	0.9600
Sn1—C7	2.127 (13)	C10'—H10E	0.9600
Sn1—O1	2.167 (12)	C10'—H10F	0.9600
Sn1—N1 ⁱ	2.603 (16)	C11—C12	1.477 (13)
Sn1—O2	3.186 (9)	C11—H11A	0.9700
O1—C6	1.274 (13)	C11—H11B	0.9700
O2—C6	1.230 (12)	C12—C13	1.550 (17)
N1—C1	1.322 (19)	C12—H12A	0.9700
N1—C5	1.347 (18)	C12—H12B	0.9700

C1—C2	1.385 (15)	C13—C14	1.480 (18)
C1—H1	0.9300	C13—H13A	0.9700
C2—C3	1.405 (15)	С13—Н13В	0.9700
С2—Н2	0.9300	C13'—H13C	0.9700
C3—C4	1.386 (16)	C13'—H13D	0.9700
C3—C6	1.479 (15)	C14—H14A	0.9600
C4—C5	1.388 (15)	C14—H14B	0.9600
C4—H4	0.9300	C14—H14C	0.9600
С5—Н5	0.9300	C15—C16	1.514 (14)
С7—С8	1.494 (14)	C15—H15A	0.9700
С7—Н7А	0.9700	C15—H15B	0.9700
С7—Н7В	0.9700	C16—C17	1.554 (14)
C8—C9	1.504 (14)	C16—H16A	0.9700
C8—H8A	0.9700	C16—H16B	0.9700
C8—H8B	0.9700	C17—C18	1.468 (15)
C9—C10	1.535 (18)	C17—H17A	0.9700
С9—Н9А	0.9700	С17—Н17В	0.9700
С9—Н9В	0.9700	C18—H18A	0.9600
C10—H10A	0.9600	C18—H18B	0.9600
C10—H10B	0.9600	C18—H18C	0.9600
C11—Sn1—C15	124.9 (5)	H10A—C10—H10B	109.5
C11—Sn1—C7	116.3 (6)	С9—С10—Н10С	109.5
C15—Sn1—C7	116.4 (6)	H10A—C10—H10C	109.5
C11—Sn1—O1	97.9 (5)	H10B-C10-H10C	109.5
C15—Sn1—O1	95.9 (6)	H10D-C10'-H10E	109.5
C7—Sn1—O1	91.2 (5)	H10D-C10'-H10F	109.5
C11—Sn1—N1 ⁱ	81.4 (5)	H10E—C10'—H10F	109.5
C15—Sn1—N1 ⁱ	85.0 (6)	C12—C11—Sn1	120.1 (9)
C7—Sn1—N1 ⁱ	88.5 (5)	C12—C11—H11A	107.3
O1—Sn1—N1 ⁱ	179.1 (8)	Sn1—C11—H11A	107.3
C11—Sn1—O2	80.8 (4)	C12—C11—H11B	107.3
C15—Sn1—O2	73.3 (4)	Sn1—C11—H11B	107.3
C7—Sn1—O2	135.2 (4)	H11A—C11—H11B	106.9
O1—Sn1—O2	44.1 (3)	C11—C12—C13	113.4 (12)
N1 ⁱ —Sn1—O2	136.2 (3)	C11—C12—H12A	108.9
C6—O1—Sn1	120.1 (9)	C13—C12—H12A	108.9
C6—O2—Sn1	70.8 (7)	C11—C12—H12B	108.9
C1—N1—C5	117.1 (14)	C13—C12—H12B	108.9
N1—C1—C2	125.2 (12)	H12A—C12—H12B	107.7
N1—C1—H1	117.4	C14—C13—C12	115.6 (17)
C2—C1—H1	117.4	C14—C13—H13A	108.4
C1—C2—C3	117.7 (11)	C12—C13—H13A	108.4
C1—C2—H2	121.2	C14—C13—H13B	108.4
С3—С2—Н2	121.2	С12—С13—Н13В	108.4
C4—C3—C2	117.4 (10)	H13A—C13—H13B	107.4
C4—C3—C6	122.8 (10)	H13C—C13'—H13D	107.3
C2—C3—C6	119.7 (10)	C13—C14—H14A	109.5
C3—C4—C5	120.4 (11)	C13—C14—H14B	109.5

C3—C4—H4	119.8	H14A—C14—H14B	109.5
С5—С4—Н4	119.8	C13—C14—H14C	109.5
N1—C5—C4	122.1 (12)	H14A—C14—H14C	109.5
N1—C5—H5	119.0	H14B—C14—H14C	109.5
С4—С5—Н5	119.0	C16-C15-Sn1	115.8 (9)
O2—C6—O1	125.0 (12)	C16—C15—H15A	108.3
O2—C6—C3	119.9 (11)	Sn1—C15—H15A	108.3
O1—C6—C3	115.1 (10)	C16—C15—H15B	108.3
C8—C7—Sn1	116.5 (10)	Sn1—C15—H15B	108.3
С8—С7—Н7А	108.2	H15A—C15—H15B	107.4
Sn1—C7—H7A	108.2	C15—C16—C17	109.7 (11)
С8—С7—Н7В	108.2	C15—C16—H16A	109.7
Sn1—C7—H7B	108.2	C17—C16—H16A	109.7
H7A—C7—H7B	107.3	C15—C16—H16B	109.7
С7—С8—С9	116.3 (12)	С17—С16—Н16В	109.7
С7—С8—Н8А	108.2	H16A—C16—H16B	108.2
С9—С8—Н8А	108.2	C18—C17—C16	114.1 (13)
С7—С8—Н8В	108.2	C18—C17—H17A	108.7
С9—С8—Н8В	108.2	С16—С17—Н17А	108.7
H8A—C8—H8B	107.4	С18—С17—Н17В	108.7
C8—C9—C10	112.0 (16)	С16—С17—Н17В	108.7
С8—С9—Н9А	109.2	H17A—C17—H17B	107.6
С10—С9—Н9А	109.2	C17—C18—H18A	109.5
С8—С9—Н9В	109.2	C17—C18—H18B	109.5
С10—С9—Н9В	109.2	H18A—C18—H18B	109.5
Н9А—С9—Н9В	107.9	C17—C18—H18C	109.5
С9—С10—Н10А	109.5	H18A—C18—H18C	109.5
С9—С10—Н10В	109.5	H18B—C18—H18C	109.5
a			

Symmetry codes: (i) x, y, z-1.

Fig. 1

Fig. 2